题目描述
从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印。
例如:
给定二叉树: [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回:
[3,9,20,15,7]
提示:
节点总数 <= 1000
解法
方法一:BFS
我们可以通过 BFS 遍历二叉树,将每一层的节点值存入数组中,最后返回数组即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript C# Swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution :
def levelOrder ( self , root : TreeNode ) -> List [ int ]:
ans = []
if root is None :
return ans
q = deque ([ root ])
while q :
for _ in range ( len ( q )):
node = q . popleft ()
ans . append ( node . val )
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int [] levelOrder ( TreeNode root ) {
if ( root == null ) {
return new int [] {};
}
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
List < Integer > res = new ArrayList <> ();
while ( ! q . isEmpty ()) {
for ( int n = q . size (); n > 0 ; -- n ) {
TreeNode node = q . poll ();
res . add ( node . val );
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
}
int [] ans = new int [ res . size () ] ;
for ( int i = 0 ; i < ans . length ; ++ i ) {
ans [ i ] = res . get ( i );
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public :
vector < int > levelOrder ( TreeNode * root ) {
if ( ! root ) {
return {};
}
vector < int > ans ;
queue < TreeNode *> q {{ root }};
while ( ! q . empty ()) {
for ( int n = q . size (); n ; -- n ) {
auto node = q . front ();
q . pop ();
ans . push_back ( node -> val );
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right ) {
q . push ( node -> right );
}
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func levelOrder ( root * TreeNode ) ( ans [] int ) {
if root == nil {
return
}
q := [] * TreeNode { root }
for len ( q ) > 0 {
for n := len ( q ); n > 0 ; n -- {
node := q [ 0 ]
q = q [ 1 :]
ans = append ( ans , node . Val )
if node . Left != nil {
q = append ( q , node . Left )
}
if node . Right != nil {
q = append ( q , node . Right )
}
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function levelOrder ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
if ( ! root ) {
return ans ;
}
const q : TreeNode [] = [ root ];
while ( q . length ) {
const t : TreeNode [] = [];
for ( const { val , left , right } of q ) {
ans . push ( val );
left && t . push ( left );
right && t . push ( right );
}
q . splice ( 0 , q . length , ... t );
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: collections :: VecDeque ;
use std :: rc :: Rc ;
impl Solution {
pub fn level_order ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut ans = Vec :: new ();
let mut q = VecDeque :: new ();
if let Some ( node ) = root {
q . push_back ( node );
}
while let Some ( node ) = q . pop_front () {
let mut node = node . borrow_mut ();
ans . push ( node . val );
if let Some ( l ) = node . left . take () {
q . push_back ( l );
}
if let Some ( r ) = node . right . take () {
q . push_back ( r );
}
}
ans
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var levelOrder = function ( root ) {
const ans = [];
if ( ! root ) {
return ans ;
}
const q = [ root ];
while ( q . length ) {
const t = [];
for ( const { val , left , right } of q ) {
ans . push ( val );
left && t . push ( left );
right && t . push ( right );
}
q . splice ( 0 , q . length , ... t );
}
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int [] LevelOrder ( TreeNode root ) {
if ( root == null ) {
return new int []{};
}
Queue < TreeNode > q = new Queue < TreeNode > ();
q . Enqueue ( root );
List < int > ans = new List < int > ();
while ( q . Count != 0 ) {
int x = q . Count ;
for ( int i = 0 ; i < x ; i ++ ) {
TreeNode node = q . Dequeue ();
ans . Add ( node . val );
if ( node . left != null ) {
q . Enqueue ( node . left );
}
if ( node . right != null ) {
q . Enqueue ( node . right );
}
}
}
return ans . ToArray ();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /* public class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
* init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* }
*/
class Solution {
func levelOrder ( _ root : TreeNode ?) -> [ Int ] {
guard let root = root else {
return []
}
var queue : [ TreeNode ] = [ root ]
var result : [ Int ] = []
while ! queue . isEmpty {
let node = queue . removeFirst ()
result . append ( node . val )
if let left = node . left {
queue . append ( left )
}
if let right = node . right {
queue . append ( right )
}
}
return result
}
}